The Photochemical Oxidation Reaction of Benzylic Alcohols in Dimethyl Sulfoxide
نویسندگان
چکیده
منابع مشابه
Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide.
This investigation was conducted to validate the use of dimethyl sulfoxide (DMSO) as a quantitative molecular probe for the generation of hydroxyl radicals (HO.) in aqueous systems. Reaction of HO. with DMSO produces methane sulfinic acid as a primary product, which can be detected by a simple colorimetric assay. To evaluate this method for estimating total HO. production, we studied three mode...
متن کاملOxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2
The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.
متن کاملOxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2
The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.
متن کاملDFT study of dimers of dimethyl sulfoxide in gas phase
Density functional (DFT) calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO) dimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interactions are observed, CH•••O, CH•••...
متن کاملSynthesis and Comparative Catalytic Study of Zirconia–MnCO3 or –Mn2O3 for the Oxidation of Benzylic Alcohols
We report on the synthesis of the zirconia-manganese carbonate ZrOx(x %)-MnCO3 catalyst (where x=1-7) that, upon calcination at 500 °C, is converted to zirconia-manganese oxide ZrOx(x %)-Mn2O3 . We also present a comparative study of the catalytic performance of the both catalysts for the oxidation of benzylic alcohol to corresponding aldehydes by using molecular oxygen as the oxidizing age...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Chemical Society of Japan
سال: 1967
ISSN: 0009-2673,1348-0634
DOI: 10.1246/bcsj.40.1502